Ring inversion in benzopentathiepin

DFT calculations for non-benzo pentathiepin: Greer, A. J. Am. Chem. Soc. 2001, 123, 10379

Geometry optimization by DFT/PBE/Λ1 (PRIRODA program [Chem. Phys. Lett. 1997, 281, 151; Russ. Chem. Bull. 2005, 54, 820])
with thermochemical ΔG (298.15 K) and Grimme's D3(BJ) dispersion corrections [J.Chem. Phys. 2010, 132, 154104; J. Comp. Chem. 2011, 32, 1456] for the energy of optimized geometry

Basis Λ1 [Chem. Phys. Lett. 2005, 416, 116; Theor Chem Acc (2019) 138: 40]: H (6s,2p)→[2s,1p]; C,N,O (10s,7p,3d)→[3s,2p,1d]

On figure(s) below click on the level title to download xyz file ==>
Click on energy level to view 3D structure in browser (run JSmol) ==>

0.00 0.00 0.00 0.00 5.48 5.48 5.48 5.48 5.48 5.48 7.15 7.15 11.80 11.80 24.26 24.26 24.26 24.26 25.94 25.94

Animation of A-B-C-A1 process



IRC in concatenated xyz format: A-B-C-A1,   A-B-B1-A1,   A-C-B-B1-C1-A1,   B-B1,   B-C-B2

Unimolecular paths for ring inversion in Greer's pentathiepin

E.M. Brzostowska, M. Paulynice, R. Bentley, A. Gree, Chem. Res. Toxicol. 2007, 20, 1046-1052

On figure(s) below click on the level title to download xyz file ==>
Click on energy level to view 3D structure in browser (run JSmol) ==>

-0.61 -0.61 0.00 0.00 2.82 2.82 2.99 2.99 3.06 3.06 4.89 4.89 11.31 11.31 18.83 18.83 20.16 20.16 25.48 25.48

Animation of Greer's process (3a-3b-3c IRC)



Animation of low-energy process (3a-3bi-3b-3c IRC)



IRC in concatenated xyz format: A-B-C-A1,   B-C-B2

Ring inversion in pentathiepan

On figure(s) below click on the level title to download xyz file ==>
Click on energy level to view 3D structure in browser (run JSmol) ==>

0.00 0.00 0.00 0.00 0.00 0.00 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.72 1.72 1.72 1.72 3.45 3.45 5.18 5.18 8.27 8.27 8.27 8.27 11.76 11.76 11.76 11.76 14.27 14.27 24.45 24.45

Animation of low-energy process (a-b-x-x1-b1-a1 IRC)



IRC in concatenated xyz format: a-b-x-x1-b1-a1,   a-a2,   a-x2,   x-x3

Stationary points on the PES of some pentathiepins

A A-B B B-B C C-A ref
0.00
0.00a
16.37
17.43a
1.96
7.04a
4.37
3.74a
12.64
12.41a
27.19
26.96a
A. Greer, J. Am. Chem. Soc. 2001, 123, 10379-10386
Calculated (B3LYP/6-31G*): 7(A) 0.00, 16(B) 4.86, TS15(A-B) 16.95, 21(C) 12.94, TS20(C-A) 26.58 kcal/mol.
The author believes that the chair-chair interconversions of pentathiepin 7(A) passes through TS20(C-A). The lower energy path through TS15(A-B) is not considered.

B.L. Chenard, D.A. Dixon, R.L. Harlow, D.C. Roe, T. Fukunaga, J. Org. Chem. 1987, 52, 2411-2420
Calculated (MP2): 6-C(A) 0.00, 6-TB(B-B) 4.1, 6-B(C) 13.1, 6-TS(1)(C-A) 29.2 kcal/mol. Chair-chair interconversion proceeds via TS(1).
0.71
0.00
20.40
19.01
3.39
3.21
3.47
6.17 12.20 25.76 E.M. Brzostowska, M. Paulynice, R. Bentley, A. Greer
Planar Chirality due to a Polysulfur Ring in Natural Pentathiepin Cytotoxins. Implications of Planar Chirality for Enantiospecific Biosynthesis and Toxicity
Chem. Res. Toxicol. 2007, 20, 1046-1052
Calculated by B3LYP/6-31G(d): 3a(A) 0.00, TS-1(C-A) 24.7, 3b(B) 5.9, TS-2 19.0, 3c(A') -0.3 kcal/mol. Mechanism 3a⇄TS-1⇄3b⇄TS-2⇄3c is proposed with barrier 24.7 kcal/mol.
0.00 19.12 4.16 6.47 10.83 27.54
0.00 19.68 3.72 6.18 11.18 27.35 Ando W., Kumamoto Y., Tokitoh N., Tetrahedron Letters, 28(41), 4833–4836 (1987)
1H NMR 1.26(s,6H), 1.57(s,6H): barrier > 16 kcal/mol
0.00 29.34 6.33 9.68 10.97 23.11 Tokitoh N., Ishizuka H., Ando W., Chem. Lett. 1988, 657-660
1H NMR 1.46(s,6H), 1.74(s,6H): barrier > 16 kcal/mol
0.00
0.00a
23.58
27.32a
5.48
9.91a
7.33
6.96a
12.55
11.26a
25.83
26.59a
0.00 23.76 6.49 7.78 10.98 27.52
0.00 23.72 5.08 9.17 25.39 O. Sato, T. Saito, M. Iwase, A. Sakai, Heterocycles 2016, 93, 714-722
No data about barrier
0.68
0.00
28.38
27.63
7.82
6.75
9.33
9.45
11.18
10.96
23.72
24.74
P.A. Searle, T.F. Molinski, J. Org. Chem. 1994, 59, 6600-6605
Lissoclinotoxin A is chiral: protons of CH2 group are diastereotopic on the NMR time scale.
B.S. Davidson, P.W. Ford, M. Wablman, "Chirality in unsymmetrically substituted benzopentathiepins: The result of a high barrier to ring inversion", Tetrahedron Lett. 1994, 35 (39), 7185-7188
R = H (varacin): according to MM calculations (CVFF force field) half-chair conformation 1c(C-A) is higher TS of the ring inversion (34 kcal/mol)
R = COOCH2CH2Si(CH3)3: diastereotopic ArCH2 signals do not broaden at 100 °C (barrier > 21 kcal/mol)
R = (S)-CONHCHMe(1-naphthyl): slow interconversion of diastereomers at room temperature over a matter of days in deuteriochloroform (barrier ~25 kcal/mol)
0.07
0.00
26.06
25.64
5.58
5.70
7.93
7.67
11.90
11.96
25.23
25.70
R. Sato, H. Ohta, T. Yamamoto, Sh. Nakajo, S. Ogawa, A. Alam
Synthesis of novel axially chiral cyclic benzopolysulfides
Tetrahedron Letters 48 (2007) 4991–4994
Experimental ∆G298 is 24.3 kcal/mol.
0.11
0.00
27.57
26.87
6.64
6.17
8.23
9.11
11.34
11.54
26.35
24.51
B.L. Chenard, D.A. Dixon, R.L. Harlow, D.C. Roe, T. Fukunaga, J. Org. Chem. 1987, 52, 2411-2420
Experimental barrier 19.3 kcal/mol (ref. 17, unconfirmed data; additionally, CH2 is singlet, not AB system [J. Am. Chem. Soc. 1985, 107, 3871-3879])
0.00
0.22
28.61
29.76
7.44
7.46
9.70
10.82
10.08
10.15
23.74
23.82
T. Kimura, M. Hanzawa, K. Tsujimura, T. Takahashi, Y. Kawai, E. Horn, T. Fujii, S. Ogawa, R. Sato
Preparation and Conformational Analysis of 6,10-Diethyl[1,2,3]trithiolo[4,5-h]benzopentathiepin Monoxides:
Isolation and Optical Properties of Chiral Benzopentathiepin Derivatives
Bull. Chem. Soc. Jpn., 75, 817–824 (2002)
Experimental ∆G298 is 23.9 kcal/mol.
0.12
0.00
26.87
26.86
7.37
7.39
8.75
8.84
13.80
14.05
21.93
21.87
Y. Sugihara, H. Takeda, J. Nakayama
Synthesis of Pentathiepanes and Isolation of the Conformers
Based on High Inversion Barrier of the Pentathiepane Ring
Eur. J. Org. Chem. 1999, 597-605; Tetrahedron Letters 39 (1998) 2605-2608
Experimental ∆G298 is 24.0 kcal/mol. Mechanism A⇄C⇄24⇄C'⇄A' is proposed, A⇄C stage being limited.
0.00 30.46 6.47 8.51 13.50 16.92
0.00 31.81 7.57 10.17 12.91 17.66 M. Anafcheh, F. Ektefa
Cyclosulfurization of C60 and C70 fullerenes: a DFT study
Struct Chem (2015) 26:1115–1124
Sheer confusion. Calculated barrier 37 kcal/mol, but depicted in fig. 4 TS is B-B.
Low energy TS C-A is not mentioned.
A A-B B B-B C C-A ref

a PBE/L1//DLPNO-CCSD(T)/cc-pVTZ
Dec 10 2019